Л. С. Гавриленко, И. А. Григорьева, А.В. Грибанов, О. Г.Новикова Применение комплекса микроаналитических методов для исследования состава материалов и продуктов их деградации под воздействием внешних неблагоприятных факторов

We use cookies. Read the Privacy and Cookie Policy

Л. С. Гавриленко, И. А. Григорьева, А.В. Грибанов, О. Г.Новикова

Применение комплекса микроаналитических методов для исследования состава материалов и продуктов их деградации под воздействием внешних неблагоприятных факторов

Проблема влияния окружающей среды на предметы искусства является одной из самых важных в области консервации. Для выяснения причин изменения их внешнего вида требуется проведение комплекса исследований, позволяющих при минимальном воздействии на памятник получить максимально возможную информацию о природе материалов.

В данной работе мы представляем результаты изучения причин потемнения красочного слоя акварелей В. С. Садовникова (1800–1879) из коллекции Государственного Эрмитажа.

Василий Семенович Садовников – живописец, ученик М. Н.Воробьева в Императорской Академии художеств. По поручению императоров Николая I и Александра II исполнил множество видов Зимнего дворца, а также загородных дворцов и парков. Серия из 15 акварелей «Виды Петербурга» была написана художником в 40-е годы и предназначалась для подарка королеве Англии Елизавете II в Виндзорский дворец. В 1956 г. акварели были возвращены Советскому Союзу и переданы в Государственный Эрмитаж.

В июне-июле 2003 г. акварели находились на временной выставке в Риме. После возвращения экспонатов в музей при их осмотре на поверхности красочного слоя были замечены темные пятна. Наша задача состояла в том, чтобы понять причину данного явления. В процессе исследования выяснилось, что потемнение было вызвано изменением химического состава свинцовых белил, введенных в красочные слои акварелей.

Введение

Акварель – одна из техник живописи, выполняемых водными красками. Связующим акварельных красок являются растительные водорастворимые клеящие вещества, главным образом камеди и декстрины. В акварельной живописи употребляется чистая вода или вода с добавлением камеди, что позволяет получать необычайно тонкое и равномерное распределение красочного материала на поверхности бумаги. Пигменты или красители, входящие в состав акварелей, должны быть исключительно мелкодисперсны, поэтому акварельная техника в чистом виде предполагает получение художником прозрачных слоев с просвечивающим белым тоном бумаги. Применение наполнителей не допускается, а роль белил выполняет сама бумага [1]. Процесс исполнения акварели такими красками – медленный и очень кропотливый, поэтому иногда практикуется введение белил, способных облегчить многие технические задачи. При этом не рекомендуется использовать свинцовые белила, которые темнеют в акварельной живописи в большей степени по сравнению с масляной. Техника живописи, выполненная непрозрачными водными красками, которые возможно нанести более корпусно, относится уже к технике гуаши, для которой характерно введение белил и животного клея. Практикуется и использование акварельных красок, к которым примешиваются белила, а при разведении – к воде добавляется животный клей.

Свинцовые белила – один из наиболее распространенных пигментов в истории живописи, смешиваемый с различными связующими – высыхающими маслами, яичной темперой, гуммиарабиком, животным клеем, воском. Технику акварели с применением белил можно считать вариантом смешанной техники. Чаще всего художники применяют ее элементы для изображения светлых участков живописи.

В литературе имеются данные об исследовании продуктов химической деградации свинцовых белил [3–6]. Как правило, определяются два основных продукта PbO2 (диоксид свинца, минеральная форма – платнерит) и PbS (сульфид свинца, минеральная форма – галена).

Химические процессы, связанные с изменением первоначального состава свинцовых белил, являются особенно серьезной проблемой, когда речь идет, как в нашем случае, о водорастворимых красках, и представляют сложность для исследователя ввиду тонкости красочного слоя и структурных особенностей поверхности бумаги. Однако для оценки состояния памятника и обратимости процессов деградации, для проведения реставрационных вмешательств необходимо идентифицировать образовавшиеся продукты, а также понять возможные механизмы их образования и способы восстановления.

Свинцовые белила нестабильны по химическому составу и темнеют при повышенной влажности и температуре, недостаточном освещении, а также при взаимодействии с соединениями серы. Поэтому их не рекомендуют смешивать с рядом пигментов, содержащих серу – ультрамарином, кадмием, киноварью, реальгаром и аурипигментом. При нахождении свинцовых белил на бумаге, где они распределены в тонком слое и, в отличие от масляной живописи, не защищены слоем лака или масляным связующим, подобные процессы могут происходить особенно активно. В масляной живописи такие смеси проявляют устойчивость и остаются неизмененными, как и в случаях утолщенных слоев водорастворимого связующего, что мы и наблюдали на примере исследуемых акварелей. В литературе также отмечается влияние отдельных видов микроорганизмов на процессы деградации свинцовых белил.

Для определения состава образующихся веществ применяются различные методы анализа: микрохимический, рентгеноспектральный, рентгенофлюоресцентный, молекулярный спектральный. Каждый из них имеет свои возможности и ограничения.

Использование рентгеновской дифракции затруднено вследствие достаточно аморфной структуры веществ, образующихся на поверхности свинцовых белил. Результаты микрохимического анализа противоречивы, а рентгенофлюоресцентный анализ осложняется наложением основных аналитических линий для серы и свинца. Особый интерес представляют исследования методом Раман-спектроскопии, несмотря на то, что образующиеся минералы имеют низкую интенсивность рамановского рассеяния [6].

Экспериментальная часть

Нами исследовались причины резкого потемнения серии акварелей (хранитель Г.А. Принцева, ОИРК), к числу которых относятся «Петропавловская крепость» (инвентарный номер № Э5509), «Мраморный дворец» (№ Э5510), «Елагинский дворец» (№ Э5511), «Михайловский дворец» (№ Э5513), «Зимний дворец» (№ Э5515), «Исаакиевский дворец» (№ Э5517), «Невский проспект зимой, Аничков дворец» (№ Э5519), «Елагин дворец на Елагином острове с лодкой» (№ Э5523), «Екатерининский дворец в Царском селе» (№ Э5523). А также, для сравнения, рассматривались акварели без видимых изменений красочного слоя: «Английская набережная» (художник Bohnstaat, № Э5527), «Петергоф (Петродворец)» (неизвестный художник, № Э5522).

Естественные процессы старения привели к «потеплению» общего тона акварелей. На поверхности красочного слоя рисунков, находящихся в постоянном хранении, визуально различимы отдельные потемневшие участки коричневатых и сероватых оттенков, более заметные на изображении голубого неба. При сравнении акварелей было отмечено более значительное потемнение красочного слоя экспонатов, побывавших на выставке, на которых дополнительно появились темные участки, параллельные границе временного монтировочного картона, что, видимо, связано с образованием тени вдоль линии соприкосновения акварелей с рамкой паспарту. Необходимо отметить, что дополнительная монтировка использовалась без удаления постоянных паспарту.

Методы исследования

Рентгенофлюоресцентный анализ проводился на рентгенофлюоресцентном анализаторе ARTAX (Германия) и позволил определить наличие свинца, кобальта, железа, хрома в красочном слое всех акварелей В. С. Садовникова. В сравниваемых акварелях («Английская набережная» и «Петергоф (Петродворец)») присутствует железо, кобальт и кальций.

Поскольку данный метод является неразрушающим, его применение является оправ данным практически в ходе любого исследования.

Инфракрасная Фурье-спектроскопия в течение многих лет традиционно используется для установления химического состава и идентификации материалов различной природы. Применение же инфракрасного микроскопа, связанного с Фурье-спектрометром, позволяет исследовать образцы, размеры которых ограничены лишь дифракционным лимитом (~20 мкм), при этом можно регистрировать не только спектры пропускания, но и спектры отражения, что не требует вмешательства в структуру объекта. При этом за счет выбора диафрагмы и визуального контроля измеряемой площади возможно получить информацию одновременно о нескольких компонентах красочного слоя.

На рис. 1 приведен инфракрасный спектр темно-коричневого вещества с изображения неба. Исследование проводилось на инфракрасном Фурье-спектрометре IFS-85 (Bruker, Германия) с инфракрасным микроскопом (МСТ-детектор, спектральный диапазон 4000-600 см-1, разрешение 4 см-1, число сканов – 150.

При детальном исследовании образцов было выяснено, что в составе связующего присутствуют полисахариды и белковый компонент, в качестве наполнителя художник использовал свинцовые белила, а одним из синих пигментов является берлинская лазурь.

Дифрактометрическое исследование проводилось на дифрактометре «ДРОН 4-13» (НПО «Буревестник», Россия) на медном излучении (рентгеновская трубка 2.5 БСВ27Си), фильтр – никелевый, напряжение на трубке – 40 kV, ток трубки – 30 m А. Последовательность расположения щелей (в направлении от трубки) – 2 мм-Соллер 1,5 х 2 мм-Соллер 1,5 х 0,25 мм-12 мм, гониометрическая приставка – ГП-13. Образцы наносились на поверхность стандартной кюветы из аморфного кварца. Регистрация дифрактограмм производилась в области предполагаемого поглощения образца – от 20 до 50 °C шагом сканирования 0,02о и временем съемки в точке 10 сек при вращении образца.

В результате в представленном образце краски были определены: свинцовые белила 2РbС03-Рb(ОН)2 и диоксид свинца Рb02 (номер 13-131 по картотеке JCPDS).

Рис. 1. Инфракрасные спектры:

N1 – вещества темно-коричневого цвета с изображения неба акварели;

N2 – свинцовых белил производства Ярославского завода художественных красок;

N3 – образца декстрина из коллекции Государственного Эрмитажа.

Основные полосы поглощения образца соответствуют свинцовым белилам (1405 и 683 см-1), берлинской лазури (2083 см-1), а также вещества, относящегося к полисахаридам (крахмалу или декстрину) – полосы поглощения в области 1000–1100 см-1.

Микродифрактометрическое исследование проводилось на микродифрактометре «D8 Discover» с дифрактометрической системой GADDS (General Area Detector Diffraction Sistem), фирмы «Bruker AXS GmbH», Германия. Исследования были выполнены Dr. Jeans Brechbдuhl – представителем фирмы «Bruker AXS GmbH», Германия.

Основой системы является двухмерный газонаполненный пропорциональный счетчик «Hi-Star» (2D-Detector). При падении дифрагмируемого пучка на поверхность детектора в режиме on-line производится регистрация всей картины в этом сегменте в том виде, в котором дифракционная картина может быть получена на широкоформатной пленке в камере Дебая-Шерера. Каждое дифракционное изображение содержит информацию о многих дифракционных линиях в широком угловом диапазоне, при этом нет необходимости перемещать детектор или пробу. Современное программное обеспечение, имеющее математически обоснованные критерии оценки, позволяет суммировать данные со всего кольца Дебая и является надежным дополнением качественной характеристики идентификационных признаков. Использование очень узких коллиматоров дает возможность анализировать микроколичества вещества (минимальный размер измеряемой пробы составляет 20 мкм). Исследование объектов не требует дополнительной пробоподготовки, наличие видеосистемы с лазерным наведением позволяет провести позиционирование образца.

Как можно видеть, на дифрактограмме (ил. 1) присутствуют как дифракционные линии свинцовых белил и пигментов – кобальта, хромата свинца, берлинской лазури, так и продуктов деградации белил – диоксида свинца, диоксисульфата свинца. Однако, как известно из литературных источников [6], толщина образующегося на поверхности сульфида свинца мала и составляет около 1 мкм. В связи с этим нам пришлось дополнительно проводить исследование методом Раман-спектроскопии, имеющей более высокое пространственное разрешение.

Раман-микроспектрометрия. Рамановские спектры были получены на Раман-микроскопе «Sеnterra» фирмы «Bruker Optics» (Германия), сопряженном с микроскопом «Olympus». Для проведения исследования не требуется дополнительной пробоподготовки. Важно лишь ограничить мощность излучения лазера, так как оно может провоцировать деградацию свинцовых белил.

Раман-спектр приведен на рис. 2. Полоса поглощения в области 1050 см–1 соответствует поглощению свинцовых белил, а полоса поглощения в области 465 см–1 согласно литературным источникам [6] свидетельствует о присутствии сульфида свинца (PbS).

Результаты и обсуждение

Одновременное использование микродифрактометра «D8 Discover» с дифракто-метрической системой GADDS и Раман-микроскопа «Senterra» позволяет идентифицировать состав пигментов и наполнителей красочных слоев, а также продукты деградации свинцовых белил: сульфид свинца, диоксид свинца, диоксисульфат свинца, без дополнительной пробоподготовки и разрушения образца, что является особенно важным. Применение комплекса доступных нам микроаналитических методов позволило получить дополнительную информацию о составе красочных слоев акварелей В. С. Садовникова.

Рис. 2. Раман-спектр вещества темно-коричневого цвета

Для серии рисунков «Виды Петербурга» художник применил своеобразную смешанную технику, использовав в акварели недостаточно стойкие свинцовые белила не только в качестве наполнителя красочного слоя, но и для предварительной клеевой грунтовки поверхности бумаги. Это позволило художнику создать светлые тона, выровнять поверхность основы и повысить адгезию с утолщенными красочными слоями, более характерными для техники гуаши.

Следует отметить, что свойственное акварельной технике нанесение тончайших красочных слоев способствует доступу влаги, серосодержащих веществ, хлористого водорода к поверхности пигмента и ускоряет деградацию свинцовых белил. В нашем случае потемнению и деградации белил способствовало сочетание комплекса негативных для этой техники факторов: неблагоприятная воздушная среда, повышенная влажность и температура, отсутствие света, повышенная щелочность и наличие сульфидной серы в монтировочном картоне, а также использование защитного стекла, создавшего замкнутое пространство.

Основные выводы

1. Применение комплекса методов позволило уточнить особенности техники В. С. Садовникова, который исполнил акварель с добавлением свинцовых белил в качестве наполнителя красочного слоя и грунта.

2. В составе красочных слоев определены пигменты (свинцовые белила, берлинская лазурь, синий кобальт, хромат свинца) и компоненты связующего (камедь, декстрин, животный клей).

3. Использование микроаналитических неразрушающих методов (микродифрактометрия, Раман-спектроскопия) дало возможность определить продукты деградации свинцовых белил (сульфид свинца, диоксид свинца, оксисульфат свинца), выяснить причины и условия их образования, рекомендовать условия хранения и экспонирования с учетом выбора монтировочных материалов, а также методику реставрации.

Литература

1. Фармаковский М. В. Акварель, ее техника, реставрация и консервация [Текст] / М. В. Фармаковский. – М.: ООО «Издательство В. Шевчук». – 2000.

2. Gettens R. J., Kuhn H., Chase W. T. Lead white in Artistsґ Pigments: A Handbook of their history and characteristics [Текст] / R. J. Gettens, H. Kuhn, W. T. Chase // Oxford University Press / ed. ARoy. – Oxford, 1993. —V. 2. – Р. 67–82.

3. Giovannoni S., Matteni M., Moles A. Study and developments concerning the problem of altered lead pigments in wall painting [Текст] / S. Giovannoni, M. Matteni, A. Moles // Studies in Conservation. – 1990. – № 35. – Р. 21–25.

4. Matteni M., Moles A. The reconversion of oxidized white lead in mural painting: a control after fi ve year period, in ICOM Committee for Conservation, 6th Trienal Meeting, Ottawa (1981) 81151–1.

5. Petushkova J. P., Lyalikova N. N. Microbiological degradation of lead – contaning pigments in mural paintings [Текст] / J. P. Petushkova, N. N. Lyalikova // Studies in Сonservation. – 1986, № 31. – Р. 65–69.

6. Smith G. D., Derbyshire A., Clark R. J. H. In sity spectroscopic detection of lead sulphide on a blackened manuscript illumination by Raman microscopy [Т е к с т] / G. D. Smith, A. Derbyshire, R. J. H. Clark // Studies in Conservation. – 2002, № 47. – Р. 250–256.

Данный текст является ознакомительным фрагментом.