Спектроскопия лазерной искры (метод LIBS)

We use cookies. Read the Privacy and Cookie Policy

Спектроскопия лазерной искры (метод LIBS)

Метод основан на измерениях спектра вторичной эмиссии, возбуждаемого в процессе образования и развития плазмы в результате воздействия на вещество излучением мощного импульсного лазера. При типичных значениях температуры плазмы (10000…20000 °K) вещество атомизуется и ионизуется. В результате этого возбуждаются практически все его атомарные и ионные переходы. На первой стадии этого процесса, совпадающей по времени с действием на плазму излучения лазера, помимо интенсивного сплошного спектра теплового излучения, перекрывающего всю видимую, ультрафиолетовую и ближнюю ИК-область, в спектре лазерной искры присутствуют линии, соответствующие многократно ионизованным атомам, в том числе линии, расположенные в рентгеновской области. После прекращения лазерного импульса на протяжении нескольких микросекунд плазма расширяется и остывает, а затем она излучает спектры нейтральных или/и одно-и двукратно ионизованных атомов. Это излучение может быть зарегистрировано с помощью спектрометра, и по результатам анализа полученных спектров можно определить элементный состав вещества.

Для создания лазерной искры на поверхности исследуемых материалов обычно используют твердотельные Nd: YAG лазеры с модуляцией добротности, имеющие очень короткую (около 10 нс) длительность импульса. За счет использования наносекундных импульсов удается избежать значительной теплопередачи по объему исследуемого образца (имеет место только локальный нагрев в зоне фокусировки пучка лазера) и экранирования лазерного излучения плазмой, формирование которой происходит уже после окончания лазерного импульса.

С помощью метода LIBS можно практически бесконтактно определить элементный состав материала основы памятника и имеющихся на нем покрытий (например, полихромных) или поверхностных загрязнений. Метод позволяет исследовать различные объекты из металла, камня, стекла, керамики, минералов, а также произведения живописи [9–11].

В последнее время интерес к данному методу в реставрации значительно возрос, главным образом в связи с появлением компактных переносных универсальных приборов, способных анализировать любые образцы размером от 10 мкм и определять химические элементы практически с любым атомным номером. Такие анализаторы имеют высокое пространственное разрешение (как по поверхности, так и по глубине), а само исследование может проводиться без какой-либо предварительной пробоподготовки в режиме реального времени [12].

Форма образующихся кратеров позволяет получить дополнительную информацию о составе поверхностного слоя [13].

LIBS является экспрессным, относительно недорогим методом анализа и позволяет регистрировать эмиссионные спектры в течение нескольких секунд. При этом, по сравнению с РФА, имеет более высокую чувствительность и позволяет идентифицировать элементы с малым атомным весом.

Исследования красочных слоев иконы «Св. Николай Мирликийский»

По стилистическим особенностям икону можно отнести к первой половине XIX в. С целью уточнения времени ее создания использовались оба описанных выше спектральных метода.

Для проведения исследования с поверхности иконы при помощи скальпеля был взят небольшой (порядка 2 мм3) фрагмент красочного слоя.

На первом этапе проводилось его микроскопическое исследование в поле зрения оптического микроскопа МБС-9. Так как исследуемая проба содержала в общей сложности до 11 различных слоев, то проводилось ее предварительное послойное разделение. Полученные таким образом образцы последовательно наносились на спектральное окно из селенида цинка и анализировались методом ИК-Фурье спектроскопии[1]. Результаты исследования представлены в Табл. 1.

Исходя из структуры, морфологических особенностей образцов, а также состава их минеральной и органической части, можно предположить, что авторский слой грунта содержит мел (ил. 1), а синий авторский красочный слой – свинцовые белила (с примесью гипса) и азурит (ил. 2). На ил. 3 приведен спектр зеленого реставрационного красочного слоя (см. таблицу 1, слой 3), в состав которого входит берлинская лазурь.

Таблица 1. Результаты послойного исследования иконы

В дополнение к исследованиям на ИК-Фурье-спектрометре был проведен элементный анализ пробы. Эта часть работы была выполнена на установке MODI (Marwan Technology, Италия) в Лаборатории прикладной спектроскопии университета г. Пиза. Данная установка представляет собой мобильную систему, включающую оптический модуль и систему обработки данных (см. фото на ил. 4)[2]. По сравнению с «классическим» устройством систем для LIBS-анализа в аппарате MODI используется двойной лазерный импульс, что обеспечивает более высокую чувствительность измерений [14].

Ил. 1. ИК-спектр грунтовочного слоя иконы

Ил. 2. ИК-спектры: (1) авторского красочного слоя иконы синего цвета и (2) азурита

Полученный на этой установке эмиссионный спектр, представлен на ил. 5.

Анализ этого спектра позволил определить в составе поверхностных красочных слоев следующие элементы: Са (мел); Pb (свинцовые белила), Na, Al, Fe, Si, Mn (природный земляной пигмент – умбра?); Fe (берлинская лазурь); Pb, Cr (хромат свинца).

Результат LIBS-измерений не противоречит данным, полученным с помощью ИК-спектроскопии и микрохимического анализа, и позволяет определить наличие в поверхностных слоях исследуемой пробы смеси пигментов: синего – берлинской лазури (или ферроцианида железа – Fe4(Fe(CN)6)3) и желтого хромата PbCrO3. Исходя из полученных результатов, реставрационный зеленый красочный слой (см. таблицу 1, слой 3) иконы можно датировать серединой XIX в. [15].

Таким образом, благодаря измерениям, проведенным с помощью метода LIBS, в верхнем красочном слое зеленого цвета удалось определить хромат свинца в дополнение к берлинской лазури. Следовательно, последняя реставрация иконы не могла проводиться ранее середины XIX в., что не позволяет датировать саму икону более ранним периодом времени, несмотря на наличие многочисленных реставрационных записей и присутствие в составе подлинного авторского слоя натурального пигмента азурита.

Проведенные исследования позволяют сделать следующие основные выводы:

1. Использование современных методов оптической инфракрасной и лазерной спектрометрии в значительной мере расширяет арсенал технических средств исследования пигментов красок произведений живописи в задачах их атрибуции и датирования.

2. Для практического использования и правильной интерпретации результатов целесообразно проводить комплексное исследование с применением различных оптико-физических методов.

3. Основное преимущество метода LIBS по сравнению с РФА состоит в возможности определения практически всех элементов периодической таблицы Менделеева (без ограничения по атомному весу). Кроме того, контролируемое последовательное воздействие лазерными импульсами за счет испарения части поверхностного слоя материала позволяет исследовать состав многослойных образцов и покрытий, что дает дополнительную информацию об их послойном элементном составе in-situ (без дополнительной пробоподготовки).

В заключение авторы выражают благодарность V. Palleschi за помощь в проведении экспериментов на установке MODI.

Ил. 3. ИК-спектры: (1) берлинской лазури и (2) зеленого красочного слоя иконы

Ил. 4. Процесс измерений на LIBS-установке MODI

Литература

1. Казицына Л. А., Куплетская Н. Б. Применение УФ-, ИК– и ЯМР-спектроскопии в органической химии. М., 1971. С. 9–60.

2. Derrick M. R. Infrared microspectroscopy in the analysis of cultural artifacts. In practical guide to infrared microspectroscopy / Marcel Dekker, Inc. New York, 1995. P. 287–322.

3. Radziemski L. J., Cremers D. A. (eds.). Laser induced plasma and application / Marcel Dekker. New York. 1989.

4. Yueh F. Y., Singh J. P., Zhang H. Laser-induced breakdown spectroscopy elemental analysis. Encyclopedia of Analytical Chemistry / R. A. Meyers, ed. Wiley. New York, 2000. P. 2066–2087.

5. Prati S., Joseph E., Sciutto G. and Mazzeo R. New Advances in the Application of FTIR Microscopy and Spectroscopy for the Characterization of Artistic Materials // Acc. Chem. Res., 2010. 43(6). P 792–801.

6. Derrick M. R., Stulik D. C., Landry J. M. Infrared spectroscopy in conservation science / Getty Conservation Institute. Los Angeles, 1999. P. 320.

7. Kuptsov A. H., Zhizhin G. N. Handbook of fourier transform raman and infrared spectra of polymers / Elsevier. Amsterdam, 1998. P. 546.

8. Vandenabeele P., Edwards H.G.M., Moence L. A decade of Raman spectroscopy in art and archaeology // Chemical Reviews. 2007. 107(3). P. 676–677.

9. Anglos D., Couris S., Fotakis C. Laser Diagnostics of Painted Artworks: Laser induced breakdown Spectroscopy of Pigments // Applied Spectroscopy, 1997. Vol. 51. P. 1025–1030.

10. Klein S., Stratoudaki T., Zafiropulos V., Hildenhagen J., Dickmann K., Lehmkuhl T. Laser-induced breakdown spectroscopy for on-line control of laser cleaning of sand-stone and stained glass // Applied Physics A. 1999. Vol. 69. P. 441–444.

11. Melessanaki K., Mateo M. P., Ferrence S. C., Betancourt P. P., Anglos D. The application of LIBS for the analysis of archaeological ceramic and metal artifacts // Appl. Surf. Sci. Vol. 197–198.

12. Agresti J., Mencaglia A. A., Siano S. Development and application of a portable LIBS system for characterising copper alloy artefacts // Anal. Bioanal. Chem. DOI 10.1007/s00216-009-3053-9 (2009).

13. Anglos D., Melessanaki K., Stringari C., Fotakis C. Laser cleaning and spectroscopy: A synergistic approach in the conservation of a modern painting // Laser chemistry. Vol. 2006. Article ID 42709 (2006).

14. Bertolini A., Carelli G., Francesconi F., Marchesini L., Marsili P., Sorrentino F., Cristoforetti G., Legnaioli S., Palleschi V., Pardini L., Salvetti A. Modi: A new mobil instrument for in situ Double-pulse LIBS Analysis // Anal. Bioanal. Chem., 385: 240–247, DOI 10.1007/s00216-006-0413-6 (2006).

15. Artists Pigments. A Handbook of Their History and Characteristics. Vol. 3. National Gallery of art / Washington, Oxford University Press, 1977. P. 273–291.

Данный текст является ознакомительным фрагментом.