Д. Н. Емельянов, Н. В. Волкова, А. А. Молодова, С. А. Мартьянова. Поведение консерванта – сополимера А-45К в экстремальных условиях
Д. Н. Емельянов, Н. В. Волкова, А. А. Молодова, С. А. Мартьянова. Поведение консерванта – сополимера А-45К в экстремальных условиях
Текстильные материалы – ткани – активно стареют. Они очень чувствительны к воздействиям кислорода, пыли, УФ-излучения, колебаниям влажности и температуры, к биологическим агентам. Даже музейные условия не могут предотвратить старение тканей. Выбор методов консервации и реставрации изделий из тканей, подбор консервантов особенно сложен из-за разнообразия изделий и материалов тканей, вида красителей, сохранности экспонатов.
Современным материалом для консервации тканей является акриловый сополимер А-45К, который все шире используется реставраторами [1]. Акриловый полимер А-45К (ТУ-6–01-2–661–83) введен в отечественную реставрационную практику как первый синтетический клей для дублирования ветхих тканей реставраторами Литовского реставрационного центра им. П. Гудинаса в начале 70-х гг. [2]. Клей представляет собой 35 % раствор сополимера, синтезированного из смеси мономеров: 50 мас. % винилацетата, 45 мас. % бутилакрилата и 5 мас. % акриловой кислоты в растворителе этилацетате [3]. Для использования в консервации раствор СПЛ разбавляют ацетоном. Технические характеристики раствора СПЛ следующие: бесцветный однородный раствор с небольшой опалесценцией; массовая доля нелетучих веществ 34,5 %; удельная вязкость 1 % раствора полимера в этилацетате не менее 1,20.
К сожалению, применение А-45К в реставрации носит эмпирический характер, практически отсутствуют физико-химические закономерности этого процесса, особенно при воздействии высоких температур. Целью данной работы было изучение свойств композиций целлюлозная ткань – акриловый сополимер (СПЛ) А-45К и их изменение при температурном воздействии.
В качестве объекта исследований консервации была выбрана целлюлозная ткань – бязь (ГОСТ-29298–2005) производства фабрики «Красная Талка», г. Иваново.
Необходимым условием использования консервантов является отсутствие изменения их цвета, растворимости и прозрачности при старении. Для выяснения этого изменения было изучено сухое старение при температурах 100, 150, 180, 200 и 300оС в течение 1, 2 и 3 часов пленок, полученных из 15 % раствора сополимера. Изменение прозрачности пленок оценивали по их светопропусканию (D) с помощью фотоэлектрического колориметра (ил. 1).
После сухого старения при 100оС в течение 1, 2 и 3 часов пленки сополимера остаются бесцветными и прозрачными, при этом они полностью растворяются в ацетоне. Старение при 150оС приводит к незначительному понижению светопропускания пленок и появлению легкой желтизны. Старение при более высоких температурах (180оС и 200оС) сопровождается тем, что прозрачность пленок резко снижается, пленки темнеют до коричневого цвета. Чтобы понять, что же происходит с сополимером после воздействия на него повышенных температур, проводили растворение его в растворителе – ацетоне. Результаты исследования приведены в Табл. 1.
Ил. 1. Зависимость светопропускания (D) пленок, приготовленных из 15 % раствора сополимера, от времени (t) сухого термостарения при температуре, °С: 1 – 100; 2 – 150; 3 – 180; 4 – 200
Таблица 1. Зависимость растворимости в ацетоне пленок сополимера А-45К, подвергнутых термостарению при различных температурах (Т) и времени воздействия (t)
Видно, что уже при 80°С и при длительном температурном воздействии идет частичное сшивание полимера, о чем свидетельствует наличие в растворе гелеобразных частиц. И чем выше температура и больше время прогрева, тем сильнее идет сшивание. Об этом говорит ухудшение или прекращение растворимости полимера и пожелтение пленок.
Оценкой старения ткани и композиций ткань – СПЛ служило также изменение разрывной прочности (ил. 2).
Ил. 2. Зависимость разрывной прочности (?p) образцов ткани из бязи от температуры (Т) сухого старения. Время старения 1 час.
1 – исходной; 2 – пропитанной 3 % раствором сополимера;
3 – пропитанной 10 % раствором сополимера
Введение в ткань сополимера не оказывает существенного влияния на ее разрывную прочность, т. к. сополимер имеет прочность несравнимо меньшую, чем целлюлоза. Основной вклад в обеспечение прочности композиции вносит жесткоцепной полимер – целлюлоза. Видно, что при прогреве до 140°С как для бязи, так и для композиций имеет место незначительное увеличение разрывной прочности. Это обусловлено тем, что в данном диапазоне температур идет испарение влаги, находящейся между волокнами ткани, ведущее к увеличению прочности. При температуре 160–200°С наблюдается потемнение образцов, что свидетельствует о прохождении термоокислительной деструкции волокон целлюлозы и полимера. Все это сопровождается резким понижением прочности. При более высоких температурах образцы ткани обугливаются, разрушаются макромолекулы, увеличивается хрупкость волокон и прочность как необработанной, так и обработанной полимером ткани снижается на 90 %.
Распространенным методом укрепления ветхих тканей является дублирование их на новую прочную основу. Именно поэтому следующим этапом работы было изучение адгезии дублируемой ткани к дублирующей. В качестве первой брали как несостаренную (исходную), так и предварительно состаренную в течение 1 часа при 180°С ткань, в качестве второй – исходную. В качестве склеивающего вещества использовали 20 % раствор А-45К, который с помощью кисти наносили на дублировочную ткань и затем, не высушивая, прижимали дублировочную ткань к дублируемой. После чего склеенную композицию сушили при комнатной температуре до полного высыхания клеевого шва. Адгезионную прочность оценивали по сопротивлению отслаиванию (о) тканей, которое измеряли на разрывной машине РМИ-5.
Из данных Табл. 2 видно, что 20 % раствор сополимера обеспечивает удовлетворительную адгезию клеевого шва к ткани как до, так и после теплового воздействия.
Таблица 2. Адгезионнная прочность отслаивания (?) композиций: ткань + сополимер А-45К + ткань
Это можно объяснить с точки зрения одного из видов механической теории адгезии. Согласно этой теории, адгезия осуществляется за счет того, что ворсинки, находящиеся на поверхности материала, при нанесении жидкого клея попадают в его толщу и после отверждения клея оказываются прочно внедренными в адгезив, что обеспечивает прочную связь адгезива с субстратом. Если заменить одну из тканей на подвергнутую ранее старению при повышенной температуре ткань, то адгезионная прочность такой композиции немного снижается, очевидно, из-за отсутствия мелких ворсинок, деструктированных у состаренной ткани.
Изучена способность сополимера А-45К экстрагироваться из ткани растворителем после теплового воздействия на композицию. Полученные результаты позволяют оценивать температурное поведение систем с точки зрения обратимости консервации, т. е. возможности удаления СПЛ из ткани. Предварительно взвешенные образцы исходной ткани размером 80?10 мм пропитывали растворами сополимера 10 % и 5 % концентрации, сушили при комнатной температуре до постоянной массы. Затем образцы прогревали при температурах 40оС, 60оС и 80оС. Такой прогрев композиций может происходить при легком глажении, а повышенные температуры позволяют также моделировать ускоренное старение композиций. Состаренные образцы погружали в растворитель – этилацетат или смесь этилацетата и ацетона. Через определенные промежутки времени образцы вынимали, сушили и взвешивали. По изменению массы образцов судили о том, сколько сополимера вымывается из ткани. Опыт с погружением чистой ткани в растворитель показал, что ее масса со временем пребывания в растворителе остается постоянной. Это означает, что молекулы волокон ткани не растворяются в растворителе. Результаты исследования по вымыванию СПЛ А-45К из ткани приведены на ил. 3а, б.
Из графика (ил. 3а) следует, что после воздействия на композицию ткань – СПЛ температуры до 40°С СПЛ из ткани вымывается полностью. Чем меньше концентрация пропитывающего раствора СПЛ, тем быстрее он вымывается. Так, если для раствора СПЛ с концентрацией 10 % этот срок равен 15 минутам, то для 5 % раствора – 5 минут. Чем выше температура прогрева и больше время теплового воздействия, тем медленнее вымывается СПЛ из ткани. Вероятно, когда температура прогрева невысокая, то имеет место лишь физическое взаимодействие между тканью и пропитывающим агентом. Прогрев композиции в течение 2 и 3 часов при 60°С и 80°С приводит к тому, что полимер вымывается из ткани не полностью. Очевидно, при достижении критической температуры компоненты целлюлозная ткань – СПЛ взаимодействуют химически – и это препятствует вымыванию СПЛ из ткани.
Ил. 3. Изменение содержания СПЛ А-45К в композиции ткань + СПЛ от времени пребывания ее в этилацетате
а) Концентрация р-ра СПЛ, нанесенного на ткань, мас.% (1) -5; (2–4) -10. Температура прогрева, °С: 1,2–40; 3–60; 4–100. Время прогрева 3 часа.
б) Концентрация р-ра СПЛ, нанесенного на ткань 10 мас.%. Время прогрева при 80°С, ч: 1–1; 2–2; 3–3
Данные исследования позволяют установить оптимальный температурный интервал использования сополимера А-45К как консерванта ткани и предотвратить необратимые химические превращения в композициях. Этот интервал до 40–50°С.
Выводы
1. Прогрев сополимера А-45К при повышенных температурах вызывает его частичное или полное сшивание, потерю растворимости и потемнение пленок.
2. Для ткани и ее композиции с сополимером выявлены три области их разрушения под воздействием повышенных температур. В первой области до 150°С происходит испарение сорбированной волокнами ткани воды, в результате прочность ткани и ее композиций с сополимером немного повышается. Во второй области от 150 до 250°С происходит деструкция целлюлозы – прочность ткани и композиций резко падает до 90 %. И в третьей области – выше 250°С – ткань сгорает, образуя обуглившийся остаток, который рассыпается при прикосновении к нему руками.
3. Установлено, что консервация ткани акриловым сополимером А-45К носит обратимый характер только при невысокой температуре воздействия (до 40–50°С). Воздействие температур более 80°С приводит к необратимым последствиям – полимер из ткани вымывается лишь частично.
Литература
1. Федосеева Т. С. Материалы для реставрации живописи и предметов прикладного искусства. М., 1999.
2. Семечкина Е. В. Способы нанесения акрилового полимера А-45К на дублировочную ткань и их эффективность // Скульптура. Прикладное искусство: Реставрация. Исследования. М., 1993. С. 122–126.
3. Емельянов Д. Н. Исследования физико-химических свойств консерванта тканей – полиакрилата А-45К // VI Грабаревские чтения: Доклады, сообщения. М., 2005. С. 208–214.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Антирыночное поведение
Антирыночное поведение Важнейшее различие между двумя концепциями и, следовательно, между возможными программами реформ приводит к принципиальным различиям в направленности поисков путей наращивания ресурсов. Рыночная концепция исходит из того, что развитие
«Свои» и «чужие»: локальная идентичность в военных условиях
«Свои» и «чужие»: локальная идентичность в военных условиях Крестьянские нарративы, повествующие о древних вражеских нашествиях, обычно рисуют войну как нечто сопоставимое с эпидемией или стихийным бедствием. Война «проходит» через деревню, приносит разрушения,
Этичное поведение
Этичное поведение Эротический этикет не так строг, как этикет в других областях человеческой жизни, однако как мужчины, так и женщины должны отвечать за свои поступки. Если женщина сексуально привлекательна, она должна соблюдать определенные правила, которые помогут ей
ЕМЕЛЬЯНОВ-КОХАНСКИЙ Александр Николаевич
ЕМЕЛЬЯНОВ-КОХАНСКИЙ Александр Николаевич наст. фам. Емельянов; псевд. Зинаида Фукс и др.;авг. 1871 – 1936Поэт, беллетрист, переводчик. В. Брюсов называл его «ultra-декадентом». Участник сборника «Русские символисты» (вып. 2 и 3). Стихотворный сборник «Обнаженные нервы» (М., 1895);
4.2.2. Нравственная культура в разных жизненных условиях
4.2.2. Нравственная культура в разных жизненных условиях Как уже было сказано, нравственная культура всегда проявляется на каком–то из ее уровней. Причем не только ее уровень, но и характер во многом определяются тем, какие ценности доминируют в каждой сфере, стороне жизни.
Культура и культурология в условиях современного социального кризиса Н. В. Исакова (г. Новосибирск).
Культура и культурология в условиях современного социального кризиса Н. В. Исакова (г. Новосибирск). Возникновение любой науки и расширение поля ее исследований имеет двоякого рода причины: с одной стороны, социальные, а с другой – собственно научные или внутренние
И. П. Дорофиенко Проблема сохранения фрески в современных условиях
И. П. Дорофиенко Проблема сохранения фрески в современных условиях Памятники средневекового монументального искусства в Украине были раскрыты реставраторами из-под масляных записей ХIХ столетия во второй половине ХХ в. в интерьерах Софийского собора (ХI в.),
Д. Н. Емельянов, Н. Н. Смирнова, А.В. Марков, О.И. Шеронова, Н. В. Волкова Температурное старение систем целлюлозная бумага – полиакрилатный консервант
Д. Н. Емельянов, Н. Н. Смирнова, А.В. Марков, О.И. Шеронова, Н. В. Волкова Температурное старение систем целлюлозная бумага – полиакрилатный консервант Отрицательное влияние на сохранность памятников оказывают два основных критических фактора: температура и влажность.
А. А. Молодова, Н. В. Волкова, Д. Н.Емельянов, Е. В. Татаринова Устойчивость композиций «хлопчатобумажная ткань – полиакрилат» к температурно-влажностному воздействию
А. А. Молодова, Н. В. Волкова, Д. Н.Емельянов, Е. В. Татаринова Устойчивость композиций «хлопчатобумажная ткань – полиакрилат» к температурно-влажностному воздействию Химические материалы и технологии их применения в реставрации и консервации памятников истории и
А. А. Молодова, Н. В. Волкова, Д. Н. Емельянов, М. С. Чуракова. Новые акриловые полимеры для реставрации холстов станковой масляной живописи
А. А. Молодова, Н. В. Волкова, Д. Н. Емельянов, М. С. Чуракова. Новые акриловые полимеры для реставрации холстов станковой масляной живописи Полиакрилаты – полимерные материалы, широко применяемые в реставрационной практике различных памятников искусства, в том числе