А. А. Молодова, Н. В. Волкова, Д. Н.Емельянов, Е. В. Татаринова Устойчивость композиций «хлопчатобумажная ткань – полиакрилат» к температурно-влажностному воздействию

А. А. Молодова, Н. В. Волкова, Д. Н.Емельянов, Е. В. Татаринова

Устойчивость композиций «хлопчатобумажная ткань – полиакрилат» к температурно-влажностному воздействию

Химические материалы и технологии их применения в реставрации и консервации памятников истории и культуры разнообразны и охватывают все классы органических и неорганических веществ. Особое место среди химических материалов, применяемых в реставрационных работах, занимают полимеры, в частности полиакрилаты [1]. Так, для дублирования тканей на новую основу используют консервант А-45К, представляющий собой сополимер (СПЛ) винилацетата (ВА), бутилакрилата (БА) и акриловой кислоты [2, 3]. Применяют в реставрации также клеи-расплавы, использование которых позволяет соединить фрагменты тканей без воды и органических растворителей. Клеи-расплавы – это достаточно простые композиции, отличающиеся высокой адгезионной прочностью, быстротой схватывания, хорошей текучестью и термической стабильностью [4].

В лабораторных условиях методом полимеризации в растворе в среде изопропилового спирта при 80 °C были синтезированы полибутилметакрилат (ПБМА) и сополимеры бутилметакрилата (БМА) с другими виниловыми мономерами, которые предполагается использовать в качестве клеев-расплавов для дублирования памятников искусства на тканевой основе. Целью работы явилось исследование устойчивости в сравнении с А-45К полученных СПЛ, нанесенных на целлюлозную ткань, к воздействию как отрицательных, так и высоких температур и повышенной влажности. В качестве моделей объектов консервации и дублировочного материала использовали бязевую ткань (ГОСТ-29298-92) Ивановского производства со средним размером пор 639 нм и кажущейся пористостью 59 %. Дублирование тканей из бязи проводили следующим образом. Сначала на один образец ткани наносили послойно раствор полимера определенной концентрации. Каждый последующий слой полимерного раствора наносили через час сушки при комнатной температуре сверху предыдущего, а перед склеиванием ткань с нанесенными слоями выдерживали в течение суток при комнатной температуре. Затем ткань с нанесенными слоями накладывали на другой образец ткани, не пропитанный полимерным раствором, и проглаживали в течение 3 мин. утюгом, нагретым до 120 °C. Охлаждение склеенных тканей проводили под давлением груза весом 0,8 кг. Концентрацию пропитывающего раствора варьировали в пределах 10–50 мас.%.

В качестве объектов исследования служили двойные СПЛ БМА, содержащие 10 моль.% ВА или БА, или 5 моль.% 2-этилгексилакрилата (2-ЭГА), а также тройной СПЛ состава 85 моль.% БМА – 10 моль.% ВА – 5моль.% БА. Исследования показали, что введение в макроцепь сополимеров БМА звеньев бутилакрилата (БА) или 2-этилгексилакрилата (2-ЭГА) способствует при сравнении с ПБМА снижению температуры текучести и вязкости расплава полимера, а также уменьшению разрывной прочности пленок, но при этом почти на порядок возрастает их эластичность. Звенья винилацетата (ВА) придают пленке СПЛ на основе БМА нежелательную хрупкость. Однако если в состав СПЛ БМА наряду со звеньями ВА ввести звенья БА или 2-ЭГА, то полимерная пленка приобретает прочность и сохраняет достаточно высокие эластические и адгезионные свойства [5]. Волокна ткани – это пористые тела. В текстиле (ткани) между нитями первой и второй крутки имеются промежутки. Поэтому характер установления взаимодействия между полимерным адгезивом и текстильным субстратом является в первую очередь диффузионным. Чем больше адгезива в клеевом шве, тем больше его может проникнуть в пустоты ткани. Увеличить содержание адгезива на дублировочной ткани можно, либо увеличив концентрацию наносимого на ткань полимерного раствора, либо нанося полимерный раствор в несколько слоев. И то, и другое сопровождается повышением адгезии [5]. Установлено, что наилучшее склеивание дублировочной ткани с дублируемой обеспечивают 50 %-ные растворы (со)полимеров при трехкратном их нанесении на образец дублировочной ткани. Растворы больших концентраций являются столь вязкими, что на ткань кистью наноситься не способны.

Адгезионные соединения в процессе эксплуатации могут подвергаться действию высоких температур, влаги и других вредных факторов. Важным требованием реставраторов является сохранение высоких прочностных и адгезионных показателей сдублированных тканей.

Нами было исследовано влияние температур Т сухого термостарения на прочностные свойства исходной и ткани, пропитанной растворами СПЛ А-45К. Было проведено сухое термостарение в трех интервалах температур: 20–100, 100–180, 180–300 °C в течение 1 часа. Результаты исследования приведены на рис. 1.

Рис. 1. Зависимость разрывной прочности Н образцов ткани из бязи от температуры Т сухого термостарения в течение 1 часа: 1 – исходной; 2 – пропитанной 3 %-м раствором СПЛ, А-45К; 3 – пропитанной 10 %-м раствором СПЛ, А-45К.

Из данных рис. 1, во-первых, видно, что пропитка тканей растворами СПЛ не оказывает сильного влияния на разрывную прочность (Н). Основной вклад в обеспечение прочности вносит жесткоцепной полимер целлюлоза. Введение в ткань СПЛ не влияет на ее разрывную прочность, т. к. СПЛ имеет прочность несравнимо меньшую, чем целлюлоза. СПЛ играет в ткани лишь роль склеивающего адгезива.

Из данных рис. 1. следует, что при прогреве до 140 °C имеет место незначительное увеличение разрывной прочности как исходной ткани, так и ткани, пропитанной растворами СПЛ. Это обусловлено тем, что в данном диапазоне температур идет испарение влаги, находящейся между волокнами ткани, ведущее к увеличению прочности. При температуре 160–200 °C идет испарение влаги, находящейся внутри волокон, и наблюдается потемнение образцов, что свидетельствует о прохождении термоокислительной деструкции волокон целлюлозы. Все это сопровождается резким понижением прочности. При более высоких температурах образцы ткани обугливаются, разрушаются макромолекулы целлюлозы, увеличивается хрупкость волокон и прочность падает на 90 %. Полимер при этом не оказывает защитного действия и, по всей вероятности, сам подвергается термоокислению и деструкции.

Необходимым условием использования консервантов является отсутствие изменения их цвета, растворимости и прозрачности при прогреве. А так как склеивание тканей происходит при повышенной температуре, то было изучено старение пленок СПЛ на основе БМА и А-45К при 100 °C, 150 °C и 200 °C в течение 3 часов по таким показателям, как цвет, прозрачность и растворимость.

Обнаружили, что акриловые СПЛ БМА сохраняют бесцветность и прозрачность при прогреве до 100–150 °C. Акриловый полимер А-45К желтеет при температуре 150 °C. При 200 °C пленки всех исследуемых полимеров желтеют, но сохраняют прозрачность, кроме того, все исследуемые СПЛ БМА при длительном прогреве при 100 °C сохраняют растворимость в органических растворителях, в то время как А-45К через 3 часа теряет растворимость уже при прогреве 80 °C. СПЛ на основе БМА теряют растворимость только при прогреве 200 °C. Причиной указанных изменений полимерных пленок является то, что при такого рода воздействиях происходят необратимые процессы – сшивка макромолекул с СПЛ.

Данные исследования позволяют установить оптимальный температурный интервал использования расплавов полимеров при склеивании тканей, чтобы предотвратить необратимые химические превращения в композициях. В нашем случае этот интервал 100–120 °C.

На следующем этапе работы исследовали влияние как низких, так и высоких температур, а также повышенной влажности на адгезионную прочность сдублированных тканей. Результаты исследования приведены в таблице.

Видно, что адгезия снижается при всех видах старения. Но СПЛ БМА, содержащие звенья БА и тройные СПЛ, а также высокомолекулярные СПЛ являются более устойчивыми к температурно-влажностному старению.

Из изложенного можно заключить следующее. Для склеивания тканей расплавом можно рекомендовать СПЛ состава 85БМА-10ВА-5БА с [?] = 0,2 дл/г. Данный СПЛ эластичен, имеет высокие когезионную и адгезионную прочности при склеивании целлюлозных тканей. Кроме того, он наиболее устойчив к тепловому и влажностному старению, консервация музейных экспонатов с его помощью носит обратимый характер. Для склеивания тканей методом дублирования расплавом полимера необходимо на дублировочную ткань наносить в 2–3 слоя высококонцентрированные растворы СПЛ.

Влияние старения на адгезионную прочность (?) композиций тканей, склеенных акриловыми (со)полимерами

[?] – характеристическая вязкость

Выводы

1. Получены (мет)акриловые СПЛ невысокой ММ, обладающие температурой текучести до 100 °C. Это позволяет использовать их как клеи-расплавы при реставрации тканей методом дублирования на новую основу.

2. Установлено, что в температурных интервалах 20–100 °C, 120–180 °C и 200–300 °C происходят соответственно процессы сушки материала, медленного старения и деструкции. В первом интервале температур идет испарение капиллярной влаги, во втором – удаление сорбированной и пластификационной влаги, в третьем – деструкция целлюлозы и пропитывающего ткань полимера, интенсивность которой увеличивается с ростом температуры.

3. Показано, что только при температуре 100 °C исследуемые СПЛ сохраняют прозрачность, бесцветность и растворимость в органических растворителях. Последнее свойство делает возможным удаление СПЛ из реставрируемой ткани растворителем в случае необходимости замены их на новое полимерное связующее при проведении повторной реставрации.

4. Установлено, что достаточно высокие адгезионные свойства полученных клеев-расплавов сохраняются в жестких условиях температурного и влажностного состояния среды.

5. Проведенные исследования показывают, что использование СПЛ А-45К для консервации тканей ограничено. Практика реставраторов показывает, что в музейных условиях укрепленные СПЛ ткани сохраняют консервационную обратимость десятки лет. Воздействие повышенных температур на композицию «ткань – СПЛ» вызывает необратимое сшивание сополимера и потерю его растворимости.

В связи с этим фактом СПЛ А-45К можно использовать только в мягких условиях, т. к. при экстремальных условиях с ним произойдут необратимые процессы, что в свою очередь либо очень затруднит повторную реставрацию, либо вообще сделает ее невозможной.

Литература

1. Емельянов Д. Н., Волкова Н. В. Критерии и методы применения синтетических полимеров для реставрации и консервации произведений искусства [Текст] / Д. Н. Емельянов, Н.В.Волкова. – Черкассы, 1981. – С. 20. – Деп. № 665Д81.

2. Семечкина Е. В. Способы нанесения акрилового полимера А-45К на дублировочную ткань и их эффективность [Текст] / Е. В. Семечкина // Скульптура. Прикладное искусство (Сборник научных трудов). – М.: ВХРНЦ им. академика И.Э.Грабаря. – 1993. – С. 122–126.

3. Емельянов Д. Н. Исследования физико-химических свойств консерванта тканей – поли-акрилата А-45К [Текст] / Д. Н. Емельянов // Грабаревские чтения VI. – М.: Сканрус. – 2005. – С. 208–214.

4. Никитин М. К., Мельникова Е. П. Химия в реставрации [Текст] / М. К.Никитин, Е. П. Мельникова. – Л.: Химия. – 1990. – С. 304.

5. Волкова Н. В., Емельянов Д. Н., Молодова А. А, Лебедева А. Д. Закономерности укрепления тканей акриловыми сополимерами методом дублирования [Текст] / Н. В.Волкова и др.// Материалы V международной конференции «Обеспечение сохранности памятников культуры: традиционные подходы – нетрадиционные решения». – СПб.: РНБ. – 2006. – С.248–255.

Данный текст является ознакомительным фрагментом.