К. И. Маслов, В. А. Парфенов, Ф. В. Гузанов. Мониторинг фресок с использованием трехмерного лазерного сканирования. Предварительные результаты
К. И. Маслов, В. А. Парфенов, Ф. В. Гузанов. Мониторинг фресок с использованием трехмерного лазерного сканирования. Предварительные результаты
В соответствии с «Инструкцией по ведению работ на произведениях монументальной живописи» 1987 г. для характеристики состояния настенных росписей используются фотографии и схемы – картограммы живописи, на которых указываются условными обозначениями различные разрушения – разрушения и утраты красочного слоя, трещины и отставания штукатурной основы и т. д.{119}. Метод фиксации состояния стенописи посредством схем-картограмм с соответствующим набором условных обозначений видов разрушений был детально разработан в 1970-х гг. на основе многолетнего опыта реставрационных работ А. П. Некрасовым и Л. П. Балыгиной{120}.
Очевидно, что информация о состоянии стенописи, которую дают изображения на фотографиях, получаемые посредством проекции трехмерных объектов на плоскость, ограничена, а рисуемые от руки с натуры или с фотографий схемы – картограммы росписей весьма неточны.
Одним из характерных видов разрушений настенных росписей являются трещины и утраты штукатурной основы. В случае древнерусских стенописей, в которых штукатурная основа нанесена по левкасным гвоздям, основной причиной ее разрушений, локализованных над шляпками гвоздей, является увеличение последних в объеме вследствие коррозии (ил. 1–3). В этой ситуации необходимо проведение систематических обследований состояния штукатурной основы с целью обнаружения разрушений штукатурки на самых ранних стадиях и своевременного консервационного вмешательства.
Очевидно, такой мониторинг разрушений может быть эффективен только в том случае, если он проводится с достаточной регулярностью и высокой точностью. Причиной, по которой обследования состояния стенописей проводятся сегодня лишь эпизодически, является большая трудоемкость и стоимость установки лесов и тур, с которых только и возможно их проведение.
Одним из возможных путей решения задачи высокоточного мониторинга стенописей, существенно менее трудоемкого и, соответственно, более экономичного, чем обследование с лесов и тур, является использование технологии трехмерного (3D) лазерного сканирования.
При лазерном сканировании производятся измерения расстояний между сканером и отдельными точками поверхности исследуемого объекта. Скорость таких измерений определяется быстродействием сканера и составляет от нескольких тысяч до полумиллиона точек в секунду. В результате формируется так называемое «облако» точек, которое несет в себе информацию о размерах и стереометрической форме предмета. По сути дела, это облако точек есть ничто иное, как объемная виртуальная копия, которая позволяет рассматривать объект с разных сторон, увеличивать или уменьшать его изображение на экране компьютера, делать разрезы, сечения в любой заданной плоскости, вычислять площадь развернутой поверхности и т. д.
Отличительной особенностью лазерных сканеров является высокая точность измерений координат отдельных точек поверхности объекта, которая составляет от нескольких миллиметров до десятков микрон (в зависимости от дальности и принципа действия прибора), что позволяет фиксировать мельчайшие детали рельефа исследуемой поверхности. Другое важное достоинство данной технологии – это возможность дистанционных измерений (с расстояния нескольких десятков метров){121}.
В том случае, когда необходимо фиксировать состояние объекта с полихромной поверхностью, например живопись на стене, можно объединить лазерное сканирование с цифровой фотограмметрической съемкой. Сочетание этих двух методов позволяет получать цветные ортофотопланы с очень высоким разрешением. При этом в отличие от обычных ортофотопланов (получаемых методом традиционной фотограмметрии) каждая точка цифрового изображения несет в себе информацию о ее геодезических координатах по трем измерениям{122}.
В последние годы технология лазерного 3D-сканирования находит все более широкое применение в области реставрации и воссоздания памятников культуры, а также для создания виртуальных экспозиций в музеях, то есть в тех случаях, когда требуются точные сведения о форме различных объектов, образуемой их внешней поверхностью, – памятников архитектуры, археологии, скульптуры и пр.{123}. Точна я фиксация рельефа поверхности объекта и его объемных форм посредством лазерного сканирования позволяет использовать этот метод, в частности, для экспертизы станковой живописи{124}, а также мониторинга состояния ее основы и красочного слоя{125}.
В июне 2010 г. нами был проведен ряд экспериментов, целью которых была проверка принципиальной возможности использования технологии лазерного 3D-сканирования для решения задачи мониторинга состояния штукатурной основы настенных росписей и определения требуемых для этого технических характеристик лазерных сканеров.
В ходе экспериментов было проведено сканирование модельного образца росписи с характерными для древнерусских стенописей разрушениями штукатурной основы. В качестве модели стенописи служила копия фрагмента помпеянской фрески (II в. н. э.) на гипсовой основе, которая была разбита на несколько частей, а затем приклеена к листу оргалита таким образом, чтобы на ее поверхности появились трещины различной ширины (ил. 4). В правом верхнем углу «фрески» было смоделировано «вспучивание», имитирующее разрушение древнерусских стенописей в местах левкасных гвоздей.
В экспериментах по лазерному сканированию было использовано три сканера, отличающихся между собой по дальности и точности измерений: IMAGER 5006 (Zoller+Froehlich GmbH, Германия), MV224 (Metris, Бельгия) и ModelMakerD (Metris, Бельгия).
Среди указанных приборов наибольшую точность обеспечивает лазерный радар MV224, который может работать на дистанциях до 24 метров в диапазоне углов + 45 градусов (по вертикали) и 360 градусов – по горизонтали. При дальности 1 м погрешность измерений этого прибора составляет 10 мкм, но возрастает по мере увеличения расстояния (прирост – 2,5 мкм/м).
Сканер IMAGER 5006 позволяет работать на расстоянии до 79 метров от объекта, при этом точность сканера в зависимости от дальности изменяется в пределах от 0,4 мм (на расстоянии единиц метров) до 6,8 мм (на максимальной дальности 79 м). Кроме того, точность измерений зависит и от отражательных свойств объекта.
Что касается сканера ModelMakerD, то его точность сравнима с точностью радара, однако дальность действия ограничена расстоянием около 1 м.
Как показали эксперименты, применение лазерного сканирования действительно позволяет решать задачу мониторинга стенописей. Все три использованных в работе сканера зафиксировали имеющиеся на поверхности фрески трещины и рельеф поверхности. В качестве примера на рис. 5 приведена так называемая матрица высот поверхности фрески, полученная с помощью сканера IMAGER 5006 и специальной программы ScanIMAGER (разработка компании «Фотограмметрия»). На данном изображении различные цветовые оттенки характеризуют различия в высоте рельефа поверхности. На рис. 6 можно видеть облако точек, полученное в результате сканирования росписи сканером ModelMakerD. На нем отчетливо «читаются» трещины основы.
При достаточной точности проведения измерений, надежности реперных точек и наличии соответствующих методов компьютерной обработки, полученных в разное время виртуальных 3D-моделей росписей можно выявить динамику разрушений, в частности изменения с течением времени ширины и длины трещин штукатурной основы, фиксировать появление новых трещин, а также изменения рельефа поверхности красочного слоя (например, вспучивание основы над левкасными гвоздями).
В то же время остается пока открытым вопрос о том, каковы могут быть минимальные величины изменений красочного слоя и основы (например, ширины трещин), которые возможно зафиксировать с помощью лазерных сканеров при дальности измерений 15–25 м. Как показал первый опыт работы с лазерным радаром MV224, потенциально наиболее пригодным для измерений в указанном диапазоне расстояний от объекта, использование этого прибора для контроля тонких (шириной до 1 мм) трещин, образовавшихся на поверхности живописи, требует очень тщательного подбора его рабочих параметров. Во время короткого 1-дневного эксперимента (именно на такое время мы смогли получить доступ к этому сканеру) провести такую работу не представлялось возможным. Полученные с использованием этого высокоточного радара результаты можно охарактеризовать как неоднозначные, поскольку в полной мере интерпретировать их нам пока не удалось.
Вместе с тем, проведенные эксперименты достаточно ясно показали перспективность использования лазерного сканирования для мониторинга стенописей, и у авторов статьи нет сомнений в том, что разработка соответствующей методики мониторинга будет успешна.
В заключение выражаем благодарность специалистам научно-производственных компаний «Фотограмметрия» и «Нева Технолоджи» за полезные консультации и помощь в проведенных исследованиях.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Алексей Александрович Маслов Китай и китайцы. О чем молчат путеводители
Алексей Александрович Маслов Китай и китайцы. О чем молчат путеводители Зачастую люди терпят неудачу в делах, Находясь на пороге успеха. Будь в конце столь же осторожен, как и в начале, — И не будет неудачных
Николай Парфенов Прогулки наблюдателя
Николай Парфенов Прогулки наблюдателя Тридцать лет подряд почти каждый день он гулял в Черемушкинском парке, кормил белок и птиц. Люди узнавали его, подходили, здоровались. А потом он не пришел. И уже никогда не придет.Николая Ивановича не стало на православное Рождество.
С. А. Добрусина, Н. И. Подгорная, С. И. Чернина Мониторинг деятельности библиотек в области консервации библиотечных фондов
С. А. Добрусина, Н. И. Подгорная, С. И. Чернина Мониторинг деятельности библиотек в области консервации библиотечных фондов В последние годы интерес к проблеме обеспечения сохранности библиотечных фондов значительно возрос, увеличивается количество библиотек, создающих
В. А. Коробов Метод визуальной реконструкции частично утраченных надписей с использованием современных технологий
В. А. Коробов Метод визуальной реконструкции частично утраченных надписей с использованием современных технологий В современной практике реставрации станковой живописи довольно часто помимо основных задач по укреплению, раскрытию и восполнению утрат памятников
В.А.Парфенов Лазерные технологии реставрации и исследования произведений искусства
В.А.Парфенов Лазерные технологии реставрации и исследования произведений искусства ВведениеСоздание лазера в 1960 г. находится в одном ряду с такими важнейшими научными открытиями XX в., как изобретение радио и телевидения, ядерного реактора, реактивного двигателя и
Е. В. Рудакас О сложности определения техники и реставрации акварелей с использованием свинцовых белил на примере рисунков В.С. Садовникова
Е. В. Рудакас О сложности определения техники и реставрации акварелей с использованием свинцовых белил на примере рисунков В.С. Садовникова Своим выступлением я хочу привлечь внимание к конкретному случаю из музейной практики. Речь пойдет о серьезных изменениях
Ю. Г. Бобров, И. А. Григорьева, В. А. Парфенов. Идентификация пигментов красок методами оптической и лазерной спектроскопии
Ю. Г. Бобров, И. А. Григорьева, В. А. Парфенов. Идентификация пигментов красок методами оптической и лазерной спектроскопии Современные подходы к решению задач исследования произведений живописи в процессе реставрации, экспертизы и атрибуции требуют использования
А. Н. Геращенко, И. Ю. Кирцидели, В. А. Парфенов. Противодействие биологическим поражениям памятников с помощью лазерной обработки
А. Н. Геращенко, И. Ю. Кирцидели, В. А. Парфенов. Противодействие биологическим поражениям памятников с помощью лазерной обработки В настоящее время биологические поражения являются одной из главных причин разрушения памятников. Биоповреждением принято называть
А. Б. Гребенщикова, В. В. Сергиеня. Методика отслоения масляной живописи XIX в. от фресок XII в. в Спасо-Преображенской церкви Евфросиньева монастыря города Полоцка[5]
А. Б. Гребенщикова, В. В. Сергиеня. Методика отслоения масляной живописи XIX в. от фресок XII в. в Спасо-Преображенской церкви Евфросиньева монастыря города Полоцка[5] Отслоение и сохранение на новом основании поновления живописи еще недостаточно распространено в
К. И. Маслов, Ф. В. Гузанов, С. О. Завгородний, Е. И. Шершунов, В. А. Янычев, А. Г. Дементьев. Изготовление основы фрагмента монументальной живописи методом напыления пенополиуретана
К. И. Маслов, Ф. В. Гузанов, С. О. Завгородний, Е. И. Шершунов, В. А. Янычев, А. Г. Дементьев. Изготовление основы фрагмента монументальной живописи методом напыления пенополиуретана Метод монтирования на пенопластовую основу снятых со стен зданий или найденных при
Результаты исследования
Результаты исследования СоставСведения о химическом составе двух частей зеркала, приведены в Табл. 1. (фрагмент 1 отобран от тыльной части зеркала, фрагмент 2 – от зеркального диска).Таблица 1. Составы фрагментов двух частей зеркала из Мечетсая Как видно из приведенной
О. Б. Ришняк, О. Я. Садова. Исследование и реставрация фресок позднеантичного периода из Херсонесского некрополя
О. Б. Ришняк, О. Я. Садова. Исследование и реставрация фресок позднеантичного периода из Херсонесского некрополя Некрополь Херсонеса Таврического, который расположен вдоль берега Карантинной бухты в г. Севастополь, является неотъемлемой частью комплекса античного